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Abstract

Influenza databases now contain over 100,000 worldwide sequence records for strains influenza A(H3N2) and A(H1N1).
Although these data facilitate global research efforts and vaccine development practices, they also represent a stumbling
block for researchers because of their confusing and heterogeneous annotation. Unclear passaging annotations are
particularly concerning given the recent work highlighting the presence and risk of false adaptation signals introduced by
cell passaging of viral isolates. With this in mind, we aim to provide a concise outline of why viruses are passaged, a clear
overview of passaging annotation nomenclature currently in use, and suggestions for a standardized nomenclature going
forward. Our hope is that this summary will empower researchers and clinicians alike to more easily understand a virus
sample’s passage history when analyzing influenza sequences.
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1. Introduction

Thousands of influenza viruses are sequenced annually in a
global public health endeavor aimed at understanding and com-
bating seasonal epidemics. The constant, steady proliferation of
sequenced viruses from year to year has both led to more infor-
mation available for vaccine development (Ampofo et al. 2013)
and allowed researchers to create progressively more detailed vi-
ral phylogenies in an effort to identify regions under selection
(Anderson et al. 2016; Timofeeva et al. 2017). Increasingly sophis-
ticated analyses using sequences from various collaborative

influenza databases, such as the Influenza Research Database Flu
database (IRD) (Zhang et al. 2017) and the Global initiative on
sharing all influenza data Epiflu (GISAID) database (https://www.
gisaid.org), have helped identify long-term evolutionary trends in
influenza viruses (Belanov et al. 2015; Du et al. 2017; Moncla,
Florek, and Friedrich 2017). Although these efforts have greatly
expanded our understanding of influenza virus evolution and
have led to more informed vaccine development, they have also
highlighted a major stumbling block in influenza research as a
whole: spurious adaptation signals introduced by cell passaging
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(Gatherer 2010; Lee et al. 2013; Chen et al. 2016; McWhite, Meyer,
and Wilke 2016).

Although it has long been known that high levels of passag-
ing and cultivation in certain cell types can alter influenza
strain phenotype and sequence (Wyde et al. 1977; Robertson
et al. 1993; Bush et al. 2000), recently it has been shown that
even low levels of passaging in a wide range of cell types can in-
troduce false adaptation signals. Spurious adaptation signals
were first identified in egg-passaged influenza sequences some
25 years ago (Robertson et al. 1993). Since then, similar signals
have been shown to originate in samples cultivated in a myriad
of cell types derived from diverse species and tissues, including
canine (Li et al. 2009; McWhite, Meyer, and Wilke 2016; Lin et al.
2017), monkey (McWhite, Meyer, and Wilke 2016) and hamster
(Govorkova et al. 1999) cell lines.

The recent identification of a spurious Zanamivir (influenza
neuraminidase inhibitor) resistant mutation in MDCK (Mardin
Darby Canine Kidney) passaged sequences (Little et al. 2015)
highlights that such false signals represent more than just a the-
oretical concern for the influenza research and the larger medical
communities. Although the Zanamivir example is concerning,
the impact of such erroneous information on seasonal vaccine
development is of a potential greater medical threat. False signals
complicate downstream analysis and can lead to poorly inferred
evolutionary trends, which may ultimately result in improper
strain selection and the development of less effective vaccines.
Indeed, recent sub-optimal vaccine strains may have passaged
isolates to blame, as highlighted by structural and biochemical
analyses linking the poor performance of vaccines developed
from egg-passaged sequences directly to mutations caused by
passaging (Wu et al. 2017; Zost et al. 2017; Chen et al. 2018).

Although research efforts into other human viruses may also
encounter false adaptation signals related to cell passaging, the is-
sue is particularly pronounced in influenza virus because of the di-
versity of cell lines used to culture the virus and the seasonal
vaccine development efforts. In terms of cell line diversity, most
other human viruses are solely cultured in primate cell lines (e.g.
Zika virus or Ebola virus) or in human cell lines (HIV) (Krowicka
et al. 2008; Broadhurst, Brooks, and Pollock 2016; Himmelsbach and
Hildt 2018), and these cell lines are likely to produce less significant
adaptation signals than the broad collection of cell lines in which
influenza samples are cultivated. Influenza is also unique in that
global influenza surveillance efforts are aimed at producing yearly
vaccines that are likely more influenced by false adaptation signals
compared with vaccines or treatments developed over longer peri-
ods for slower evolving and non-seasonal disease agents.

With growing focus on the effects of cell passaging on influ-
enza sequencing data, it is becoming increasingly important for
researchers to clearly understand the nomenclature used to anno-
tate passaged sequences. To facilitate this understanding, we pro-
vide below a clear outline of existing annotation strategies for
common sequences in the IRD, GISAID, and the Swiss Institute of
Bioinformatics (SIB) OpenFluDB (OpenFlu, http://OpenFlu.vital-it.
ch/) databases, and we propose a standardized approach to anno-
tating isolates. We hope that this perspective will catalyze a more
systematic approach to creating, storing, and analyzing passaging
information in the influenza research community, and that this
effort will ultimately strengthen research efforts that lead to
refinements in the seasonal vaccine strain selection process.

2. Passaging: we do it because we have to

Given the growing body of research illuminating issues with cell-
passaged influenza sequences and the increasing availability of

sequences from original clinical specimens, one has to ask why
passage influenza samples at all? Most influenza research,
whether the investigation involves vaccine development or not,
needs to propagate viruses in vitro in order to analyze host char-
acteristics. In an ideal world, clinical specimens would be se-
quenced directly, analyzed, and used to create an accurate model
of influenza adaption that would inform strain inclusion for vac-
cine development with little to no bias. This best-case scenario,
however, is impeded by the techniques needed to characterize
viruses in vitro.

Although it is true that many influenza clinical specimens are
directly sequenced without passaging, clinical specimens do not
typically provide the amount of virologic material necessary to
perform the standard antigenic assays: the hemagglutination-
inhibition (HI) test, which is essential in strain selection during
vaccine development (Fig. 1) or animal experiments (Krauss,
Walker, and Webster 2012; Eisfeld, Neumann, and Kawaoka
2014). Indeed, the HI assay requires a minimum of approximately
seven logs of virus per 50 lL (Hierholzer and Killington 1996)
(eight hemagglutination units/50 ll; Pedersen 2014), which is ac-
quired through one or more rounds of passaging. Additionally,
two types of vaccines require strains which must be passaged ei-
ther in eggs or in a qualified MDCK cell line (Weir and Gruber
2016; Grohskopf et al. 2018). Thus, while the use of sequences de-
rived from original clinical material represents a research ideal,
the current reality is that passaged isolates are a necessary step
in obtaining sufficient antigenic and genetic information for vac-
cine development; therefore, it is important to have a clear un-
derstanding of passaging and its effects on viral sequences.

3. Passaging nomenclature

Currently, the vast majority of influenza sequences are pas-
saged isolates from a menagerie of various cell types. This pas-
saging information is indicated via a patchwork of non-
standard nomenclature methods that vary wildly across and
even within databases. Indeed, the passaging information asso-
ciated with A (H3N2) samples collected between 2005 and 2018
and stored in OpenFlu, IRD, and GISAID illustrates the haphaz-
ard naming and numbering strategies for various cell types
used to passage isolates (Table 1). In the GISAID database alone,
MDCK passaged samples are indicated with at least fifteen vari-
able naming schemes from different institutions. The absence
of clear labeling patterns combined with the extreme variability
in naming conventions across cell types and databases create a
Gordian knot for researchers seeking to disentangle the effects
of passaging on influenza sequences. Despite ongoing work to
develop tools to parse passage history abbreviations any such
tool will require constant manual updates to keep pace with
novel abbreviations introduced by new entries.

Notwithstanding substantial heterogeneity in approach, all
passaging annotations aim to provide similar relevant informa-
tion about the history of the cultivation of an influenza isolate
sequence: typically, the type of cell(s) used in passaging, num-
ber of passages, and cell handling data (movement between lab-
oratories and/or change in substrate). This information is then
used both to identify factors responsible for false adaptation
signals and to help distinguish which sequences should be ex-
cluded from downstream analyses.

3.1 Cell type

Annotated influenza samples are typically passaged in one or
more of only a handful of cell types. Annotations generally
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begin with an indicator of the cell line used, such as SIAT for
MDCK SIAT cells, E for egg, and PMK for primary monkey kidney
(Table 2). These indicators are in no way standardized and sub-
stantial variation exists for each cell type. Figure 2 illustrates
the frequency of unique labels used to identify sequences pas-
saged at least once in a monkey cell line. Although these labels
are likely similar enough to allow a researcher to manually dis-
tinguish samples that have been passaged in monkey cell lines
from those that have not, they are dissimilar enough to make it
difficult for an automated script to efficiently do the same. In
addition, many indicators are vague or ambiguous (i.e. X1 or C1
for a sample that has been passaged once in ‘an unspecified cell
line’), and a significant portion of influenza A(H3N2) and
A(H1N1) samples lack any cell type indicator or passaging anno-
tation whatsoever (Fig. 3A). Although the proportion of such
unclearly annotated isolates has decreased in recent years, they
still accounted for roughly one-third of all recorded A(H3N2) iso-
lates in 2017 (Fig. 3B).

Even though many influenza virus isolates have missing
passaging annotations or are ambiguously labeled, several stud-
ies have successfully identified the impact of passaging on se-
quence fidelity in the most commonly used cell types
(Govorkova et al. 1999; Li et al. 2009; McWhite, Meyer, and Wilke
2016; Lin et al. 2017). For influenza A(H3N2) viruses, these

studies have shown that MDCK cells expressing human SIAT1
produce sequences that differ the least from sequences derived
from original clinical samples and are now (from 2015 onwards)
the predominate cell type used in North America to passage iso-
lates as per GISAID records (Li et al. 2009; Chen et al. 2016;
McWhite, Meyer, and Wilke 2016).

3.2 Number of passages

Passage number, the most uniformly recorded annotation as-
pect, is consistently indicated by a number succeeding a cell
type indicator with or without a space between (e.g. MDCK2 or
MDCK 2). This convention allows researchers to easily parse
annotations for passage number information, although some
confusion arises when cell line names include numbers (e.g.
MV1LU cells) and when passaging annotations lack clear indica-
tors for all cell types (e.g. C3 þ 1). As with cell type, many sam-
ples exclude information about passage number. This lack of
information is represented either explicitly with an X following
a cell type indicator or implicitly with lack of a number indicat-
ing no information.

Due to the reasonably clear and consistent nomenclature
currently in use, passage number is perhaps the easiest factor
to study when focusing on influenza adaptation to cell culture.

Figure 1. HI assay for vaccine development. (A) Overview of the HI assay. Hemagglutinin on the surface of viral particles binds red blood cells, creating a lattice of blood

cells that show up as a diffuse layer at the top of a microtiter plate well. When enough antibodies with strong affinity for the viral hemagglutinin are present, viral par-

ticles are bound and the red blood cells sink, forming a small dot at the bottom of the microtiter plate well. (B) Journey of a viral particle, from isolation to HI assay.

Viral particles are isolated, cell passaged (often multiple times), and then either tested for hemagglutination activity or used to produce antibodies via infection of ani-

mals with naı̈ve immune systems.
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As such, several groups have been able to show that each addi-
tional passage has a consistent, additive impact on the presence
of false adaptation signals in sequenced samples. Across the
most commonly used cell types, sequences diverge more from
original clinical specimens as passage number increases (Wyde
et al. 1977; McWhite, Meyer, and Wilke 2016). Since most anno-
tated sequences plainly indicate the number of passages it is
also easy to consider this trend when inferring influenza virus
phylogenies or selecting vaccine strains. Researchers can sim-
ply favor sequences which have been passaged less, although
the additive effect of passaging makes it difficult to provide an
absolute limit on the number of passages acceptable for any
given cell type.

3.3 Heterogeneous passaging and cell handling data

Samples are also often passaged in multiple cell lines and/or
cell types. Such passaging is commonly indicated by a wide

array of symbols, including ‘and’, blank spaces, ‘,’, ‘�’, ‘_’, ‘;’, and
‘þ’. Cell lines can also be listed with no separation, for example,
M3C3 to indicate three passages in MDCK and three in some
other cell line, and certain symbols are used by some research-
ers to indicate more information than just passaging, such as ‘/’
indicating the transfer of a strain between labs or institutions.
This diversity adds another layer of difficulty to parsing sample
annotations, and it has made it particularly difficult to investi-
gate the impact of heterogeneous passaging on sequence fidel-
ity. Consequently, most studies lump such samples together
and either analyze them as a heterogeneous group (Chen et al.
2016) or exclude them altogether (McWhite, Meyer, and Wilke
2016). Such lumped analyses mean that little can be determined
about the effects of heterogeneous passaging and freeze–thaw
cycles in specific cell lines.

3.4 Database differences

In an effort to strengthen influenza surveillance efforts, several
databases of influenza sequences are maintained, the three larg-
est of which are GISAID, IRD, and OpenFlu. Each of these data-
bases collects sequences from different sources, although there
is a fair amount of overlap (see Fig. 3A) as all include publicly
available samples from the International Nucleotide Sequence
Database Collaboration (INSDC, http://www.insdc.org), stored in

Figure 2. Word cloud of influenza A(H3N2) sequence annotations indicating pas-

saging in one or more cell lines where at least one is a PMK cell line. Word height

corresponds to number of sequences exhibiting a given pattern.

Table 1. Common influenza A(H3N2) passaging annotation patterns
across three databases.

Base pattern No. cell lines Example

Clinical specimen 0 Clinical specimen
Direct 0 Direct
OR 0 OR
Original 0 Original
Original sample 0 Original sample
Original specimen 0 Original specimen
PI 1 PI
T 1 MDCK
T# 1 MDCK1
T cells 1 MDCK Cells
P-# 1 P-1
P# 1 P1
Passage details: T# 1 Passage details: PMK01
Passage details: T 1 Passage details: MDCK
T# (MM/DD/YYYY) 1 S1 (9/30/2008)
T# (YYYY-MM-DD) 1 S2 (2008-9-30)
T # þ# 1 MDCK 1 þ1
TT# 1 MDCKMDCK1
TT# 2 HEPGMDCK1
T/T# 2 X/C1
T # þT# 2 MDCK 2 þSIAT1
T#/T# 2 C1/C2
T# T# 2 MDCK2 Siat1
T#/T# (MM/DD/YYYY) 2 C1/S1 (01/04/2015)

No information
�N/A- No information �N/A-

T represents type of cell; # represents a single digit number.

Table 2. Existing naming conventions and suggested standardized names for common cell lines used to passage influenza viruses.

Cell type Common existing annotations Suggested name

Egg E# j Egg# j Embryonated Eggs j AM EGG
Madin-Darby Canine Kidney MDCK# jM# jMDCK CELLS MDCK
Rhesus Monkey Kidney RMK# j RHMK# j RII j PMK# j PRHMK# RhMK
Madin-Darby Canine Kidney—SIAT MDCK-SIAT# j S# j SIATMDCK# j SIAT# SIAT
Unpassaged Original j OR j Clinical Specimen j No Passage j Primary j Direct j Nasal Swab j CS Original Specimen
Unknown None j j -N/A- N/A
Unknown Cell C# j P# j X# Unknown Cell

The symbol ‘#’ represents a single digit number other than 0. Note, this table does not attempt to provide a complete list of all possible cell lines but rather focuses on

the most common cell types across three databases.
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the National Center for Biotechnology Information’s GenBank re-
pository (Benson et al. 2018). Although each database supple-
ments these INSDC samples with user-uploaded sequences, IRD
and OpenFlu have far fewer user-uploaded data than GISAID,
which includes nearly all available influenza A(H3N2) and (H1N1)
data (Fig. 3A). Despite the large amount of shared isolate data
across databases, each database parses annotations into differ-
ently named fields. For example, the sequence and metadata for
the influenza A(H3N2) isolate A/Zhuhai/964/2008 was uploaded
to Genbank on 24 July 2016 with passage indicated as ‘MDCK’ un-
der the ‘lab_host’ field of the structured comments. In the corre-
sponding GISAID record the passage information is listed
correctly under ‘passage details/history’ as ‘MDCK’ while in IRD
and OpenFlu the same sample is listed as ‘N/A’ and ‘no informa-
tion’ under the fields ‘Passage History’ and ‘passage’, respectively.
The correct annotation is present in IRD under ‘lab host’, a field
that cannot be included when downloading sample information.
The correct annotation is wholly absent from the OpenFlu record,
even though other records from the same submission did prop-
erly import the passaging information from GenBank to OpenFlu
under the ‘passage’ field. Consequently, each database will not
only contain some degree of unique samples but also divergent
nomenclature standards and metadata that can produce conflict-
ing information for the same sample. These variations make it
difficult for researchers to easily integrate and investigate
sequences from multiple databases, and they may bring a well
annotated isolate’s passaging status into question.

3.5 Towards a standard nomenclature

Because of the great diversity in annotation strategies, it is diffi-
cult to effectively establish exclusion criteria for passaged influ-
enza sequences. Until the effects of cell passaging are better

understood it will remain unclear which, if any, cell types pro-
duce influenza sequences that are truly free from false adapta-
tion signals. We therefore propose the use of new standard
names for common cell lines (Table 2) and a new universal pas-
sage annotation convention for all influenza samples (Table 3).
These new standards use elements from common existing anno-
tations. They were selected for ease of both human and machine
parsability, while staying as close as possible to existing annota-
tion practices, to minimize potential confusion and cost of
switching over. The vast majority of existing isolates are pas-
saged in one of the cell lines indicated in Table 2, but adding

A

B

Figure 3. Influenza A(H3N2) and A(H1N1) sequence isolate counts across three databases, 2005–18. (A) Aggregate isolates data by type. GISAID accounts for the majority

of unique isolates in both strains, about half of which either lack clear passage information or have been passaged in multiple cell lines. Isolate types are defined as fol-

lows: ‘clinical specimen’: any unpassaged direct clinical specimen; ‘single’: passaged in single identified cell line; ‘multiple’: passaged in multiple identified cell lines;

‘ambiguous’: passaging information unclear (may be single unidentified cell line or multiple cell lines with at least one line unclear). (B) Yearly isolate data by type. In

both analyzed strains there is an increase in direct clinical specimen sequences relative to other samples in more recent years. Includes unique records across all three

databases (GISAID, IRD, Openflu). Isolate types are as under (A) except ‘non-ambiguous’ which refers to isolates passaged in one or multiple identified cell lines.

Table 3. Suggested passaging annotation scheme for influenza
isolates.

Suggested annotation changes Example

One standardized name per cell line MDCK
Cell line names should not end in numbers or X SIAT
Passage number indicated via a number immediately

following the cell line
SIAT1

Unknown passage number indicated with an X SIATX
Intra-lab passaging in multiple cell lines is denoted

with þ
SIAT1þEGG1

Passaging in multiple cell lines with transfer between
labs is denoted with /

SIAT1/EGG1

Cell lines should be represented by a standardized name not ending in X or a

number. This includes SIAT cells which previously were also designated as

SIAT1 and should be referenced only as SIAT for consistency with the new

scheme. Multiple passages in the same cell line should be represented by a

number (if number is known) or an X (if number is not known) immediately fol-

lowing the cell line name. Passages in different cell lines should be separated by

a plus (þ) to indicate intra-lab passaging or a slash (/) to indicate transfer be-

tween labs.
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additional names for uncommon or novel cell lines should prove
relatively straightforward once initial guidelines are established.

Additionally, we strongly suggest that influenza databases
incorporate changes to encourage accurate passaging annota-
tion and facilitate passage-focused research. These include re-
quiring a passage history field for all sequence submissions,
validating that passage history entries either match existing
standards (for common cell lines) or are further explained in an-
other field (uncommon cell lines), and making passage history
searchable by discrete categories such as Egg, Cell, and Original
Clinical Specimen.

4. Conclusion

Making sense of influenza passaging annotations is a daunting
task. However, it is becoming increasingly important for epi-
demiologists and vaccine developers to consider passage his-
tory of isolates when selecting sequences for inclusion in
phylodynamic analyses or in vaccines. Although a clear and de-
finitive understanding of the effects of viral passaging in all cell
types is a distant end point of this research efforts, awareness
within the influenza community of the negative impact of cell
passaging on sequence fidelity is easily and currently attainable
and can only improve epidemiological and clinical research
efforts. This highlights the need for a more standard approach
to passage nomenclature across influenza researchers and pro-
ducers of sequence data. As the influenza community is looked
upon as a model of data sharing for other epidemic viruses (Shu
and McCauley 2017), we encourage this highly collaborative
community to work together to enact a new global naming con-
vention that further evinces the power and effectiveness of
open research.

5. Methods

Annotations were obtained for all (i.e. global) unique, non-
laboratory influenza A(H3N2) and A(H1N1) isolates collected
from humans between 1 January 2005 and 8 November 2018 and
uploaded to GISAID, OpenFlu, or IRD by 8 November 2018 for
A(H3N2) isolates and 12 November 2018 for A(H1N1) isolates. All
annotations were first converted to uppercase characters and
then occurrences of each unique isolate and annotation were
counted and manually sorted by cell type and passage number.
These data were used to generate Figures 2 and 3 and Tables 1–3.
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